Aller à : contenu haut bas recherche
 
 
EN     FR
Vous êtes ici:   UNIL > HEC Inst. > HEC App. > SYLLABUS
 
 

           

Data Science in Business Analytics

  • Enseignant(s):  
  • Titre en français: Données en Business Analytics
  • Cours donné en: anglais
  • Crédits ECTS:
  • Horaire: Semestre de printemps 2019-2020, 4.0h. de cours (moyenne hebdomadaire)
      WARNING :   this is an old version of the syllabus, old versions contain   OBSOLETE   data.
  •  séances
  • site web du cours site web du cours
  • Formations concernées:
  • Permalink:



       

 

Objectifs

Upon completion of that course the students will be able to

- Manage and analyze data,

- Develop data products,

- Use data science in a business context.

Contenus

The aim of this course is to learn the most important tools to use data science in a business context, and includes concepts from statistics and computer science:

"Just as a chemist learns how to clean test tubes and stock a lab, you’ll learn how to clean data and draw plots—and many other things besides. These are the skills that allow data science to happen, and here you will find the best practices for doing each of these things with R. You’ll learn how to use the grammar of graphics, literate programming, and reproducible research to save time. You’ll also learn how to manage cognitive resources to facilitate discoveries when wrangling, visualizing, and exploring data." – Hadley Wickham

The course will cover the following topics:

1) Explore

  1. Data visualization
  2. Data transformation
  3. Exploratory data analysis

2) Wrangle

  1. Tidy data
  2. Relational data
  3. Strings, factors, dates and times

3) Model

  1. The basis
  2. Model building
  3. Many models

4) Communicate

  1. Literate programming
  2. Graphics for communication

The class will be hands-on and centered around data: bring your laptop to lectures!

Références

There will be no mandatory reading. However, the following references will be useful:

Wickham, H., & Grolemund, G. (2016). R for Data Science. O’Reilly Media.

Wickham, H. (2014). Advanced R. Chapman & Hall/CRC The R Series.

Pré-requis

No prior knowledge of data science is necessary. However, students are assumed to have a firm command of basic statistics and to be comfortable with (or at least interested in) computer programming.

Evaluation

1ère tentative

Examen:
Sans examen (cf. modalités)  
Evaluation:

There will be three assignments (40%) and a final project (60%). For each assignment as well as the project, students will have to provide detailed written reports. Additionally, for the project, students will give a presentation during the last lecture.

Due date for presentation : May 25, 2020

Rattrapage

Examen:
Sans examen (cf. modalités)  
Evaluation:

The retake consists in asking the failing students to either do a new project or make modifications and additions to their written reports and to present them.



[» page précédente]           [» liste des cours]
 
Recherche


Internef - CH-1015 Lausanne - Suisse  -   Tél. +41 21 692 33 00  -   Fax +41 21 692 33 05
Swiss University