Aller à : contenu haut bas recherche
 
 
EN     FR
Vous êtes ici:   UNIL > HEC Inst. > HEC App. > SYLLABUS
 
 

Fraud and Business Process Analytics

  • Enseignant(s):   M.Baumgartner  
  • Titre en français: Fraude et analyse des processus business
  • Cours donné en: anglais
  • Crédits ECTS: 3 crédits
  • Horaire: Semestre d'automne 2020-2021, 2.0h. de cours (moyenne hebdomadaire)
  •  séances
  • site web du cours site web du cours
  • Formations concernées:
    Maîtrise universitaire ès Sciences en management, Orientation comportement, économie et évolution

    Maîtrise universitaire ès Sciences en management, Orientation business analytics

    Maîtrise universitaire ès Sciences en management, Orientation stratégie, organisation et leadership

    Maîtrise universitaire ès Sciences en management, Orientation marketing

 

Objectifs

  • Introduce the students to the world of fraud detection and prevention in companies.
  • Provide an overview of data analytics methods used to detect fraud.
  • Present in detail several anomaly detection techniques.
  • Focus on the use of network graphs.
  • Illustrate the potential of using Process Mining in businesses.

Contenus

Titles per day:

  1. Fraud: Introduction, Definition, Prevalence
  2. Outliers: Definition, Examples, Simple Algorithms
  3. Clustering: Introduction, Examples
  4. Association Rules, Isolation Forests, Autoencoders: Introduction
  5. Network Graphs: Definitions, Tools and Techniques, Applications
  6. Process Mining: Introduction, Definitions, Tools
  7. Written Exam (online)

Références

Fraud Analytics (Using Descriptive, Predictive and Social Network Techniques): A Guide to Data Science for Fraud Detection
Bart Baesens, Véronique van Vlasselaer, Wouter Verbeke
Wiley, 2015

Process Mining: Data Science in Action
Wil van der Aalst
Wiley, 2016 (2nd edition)

Pré-requis

none.

Regarding programming language:
I will illustrate the large majority of methods and tools using R. An introductory level of knowledge of R is helpful, but it is not a prerequisite. The course is also about creating interest to learn R at a later stage of your career.

Evaluation

1ère tentative

Examen:
Ecrit 2h00 heures
Documentation:
Autorisée
Calculatrice:
Autorisée
Evaluation:

Continuous control during the semester, and written interrogation on the last day of the course (16.12.2020). Online presence on this day is mandatory. If a student cannot be present, we will require a medical certificate. The exams starts at 08h30, and lasts for 2 hours.

Continuous control:
During the first 6 days of the course, I will switch from lecture to exercises regularly. The exercises form essentially the basic training for the final exam. I will ask you to read a document, to carry out a simple programming task in R, or simply to reproduce a short analysis that I showed during the lecture.

Format of final exam:
I will ask you questions, and you will need to provide written answers. The questions will cover the main aspects of the lectures, and they will be rather general. I will also show you results and ask you to interpret and comment them. The objective is to check whether you have managed to understand the overall view. No programming is involved. The exam is open book and online.

Rattrapage

Examen:
Ecrit 2h00 heures
Documentation:
Autorisée
Calculatrice:
Autorisée
Evaluation:

Written exam, 2hours, open-book



[» page précédente]           [» liste des cours]
 
Recherche


Internef - CH-1015 Lausanne - Suisse  -   Tél. +41 21 692 33 00  -   Fax +41 21 692 33 05
Swiss University